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ABSTRACT: The Weather Prediction Center’s Excessive Rainfall Outlook (ERO) forecasts the probability of rainfall

exceeding flash flood guidance within 40 km of a point. This study presents a comprehensive ERO verification between 2015

and 2019 using a combination of flooding observations and proxies. ERO spatial issuance frequency plots are developed to

provide situational awareness for forecasters. Reliability of the ERO is assessed by computing fractional coverage of the

verification within each probabilistic category. Probabilistic forecast skill is evaluated using the Brier skill score (BSS) and

area under the relative operating characteristic (AUC). A ‘‘probabilistic observation’’ called practically perfect (PP) is

developed and compared to the ERO as an additional measure of skill. The areal issuance frequency of the ERO varies

spatially with the most abundant issuances spanning from the Gulf Coast to the Midwest and the Appalachians. ERO

issuances occur most often in the summer and are associated with the Southwestern monsoon, mesoscale convective

systems, and tropical cyclones. The ERO exhibits good reliability on average, although more recent trends suggest some

ERO-defined probabilistic categories should be issued more frequently. AUC and BSS are useful bulk skill metrics, while

verification against PP is useful in bulk and for shorter-term ERO evaluation. ERO forecasts are generally more skillful at

shorter lead times in terms of AUC and BSS. There is no trend in ERO area size over 5 years, although ERO forecasts may

be getting slightly more skillful in terms of critical success index when verified against the PP.
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1. Introduction

a. Background

Accurate quantitative precipitation forecasts (QPF) are of

critical importance to improving flash flood predictability

(Cosgrove and Klymmer 2016; Gourley et al. 2017). Between

2015 and 2017, flash flooding has resulted in more fatalities

than lightning, hail, tornadoes, or straight-line wind damage

combined (National Weather Service 2017). Direct flood re-

lated damages between 2015 and 2017 exceeded $74 billion

(U.S. dollars), with $61 billion in damage (mostly from

Hurricane Harvey) for water year 2017 alone (Water Resources

Services 2017).

Despite recent advances, QPF remains challenging (Cuo

et al. 2011; Sharma et al. 2017), particularly during the warm

season when convection associated with localized features

(e.g., outflow boundaries) in weak forcing regimes are inher-

ently less predictable than other seasons (Fritsch and Carbone

2004; Sukovich et al. 2014; Sharma et al. 2017). In addition,

flooding rains during landfalling tropical cyclones carries its

own challenges associated with track position, intensity,

interaction with topography, and extratropical transition

(Marchok et al. 2007; Brennan et al. 2008; Luitel et al. 2018).

On average, precipitation forecasts have been gradually

improving over the past few decades. Equitable threat score of

24-h QPF at the 1-in. threshold between 1993 and 2018 has

almost doubled for the National Oceanic and Atmospheric

Administration Global Forecast System and North American

Mesoscale models [Weather Prediction Center (WPC) 2017].

In addition, the feasibility of running operational convection-

allowing models (CAMs) has resulted in additional improve-

ments to warm season QPF in the short term (e.g., lead times

less than 48 h; Cookson-Hills et al. 2017; Iyer et al. 2016; Ma

et al. 2018). However, CAMs exhibit sharper gradients and

larger magnitudes, which can result in ‘‘double penalty errors’’

with QPF (Newman et al. 2019) compared to lower-resolution

models using traditional verification techniques.

Verification of QPF from CAMs requires more novel

neighborhood or object-based methods (Clark et al. 2016; Ma

et al. 2018) that consider the structure and displacement of

precipitation objects. Furthermore, QPF error and bias gen-

erally increases with heavy precipitation events (Scheuerer and

Hamill 2015; Sharma et al. 2017). Hence, raw model QPF is

typically less accurate for high-impact events that are respon-

sible for flash flooding, although bias correction can alleviate

this problem somewhat.

An integral and somewhat underrepresented component in

creating accurate flash flood forecasts is the proper consider-

ation of the hydrological response. The relationship between

precipitation and flooding is not linear and depends on ante-

cedent soil moisture, streamflow conditions, land use, and

terrain slope, to name a few (Barthold et al. 2015; Gourley et al.

2017; Erickson et al. 2019). Starting in 1978, the Quantitative

Precipitation Branch (now folded into the modern-day WPC

Forecast Operations Branch) started issuing the Excessive

Rainfall Potential Outlook to explicitly highlight regions that

could experience flash flooding (Cooley 1978). The goal was toCorresponding author: Michael Erickson, mjaerickson@gmail.com
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provide forecasters in the field with a product that went beyond

QPF and focus on potential impacts. Eventually this product

was renamed the Excessive Rainfall Outlook (ERO) with

three different risk categories (e.g., slight, moderate, and high)

introduced on 5 October 2004 (WPC 2013), and an additional

marginal category added in October of 2016 (WPC 2016).

The modern-day version of the ERO is a probabilistic

forecast of QPF exceeding 1-, 3-, and 6-h flash flood guidance

(FFG; Barthold et al. 2015; Schmidt et al. 2007) within 40 km

of a point (WPC 2019; Erickson et al. 2019). FFG is created by

the River Forecast Centers and is an estimate of rainfall over a

given time duration that may cause small streams to floodwhen

the stream is at bankfull. The ERO consists of four risk cate-

gories: marginal (MRGL) ranging between 5%–10% proba-

bility of QPF exceeding FFG, slight (SLGT) between 10% and

20%, moderate (MDT) between 20% and 50%, and high

(HIGH) exceeding 50%. The purpose of the ERO is to provide

advance notice (e.g., 1–3 days) regarding the potential for QPF

to exceed FFG over the contiguous United States (CONUS).

Hence, the ERO represents WPC’s best attempt to provide an

indicator for flash flooding, herein defined as flooding that

begins within 6 h of the causative rain event.

b. Motivation

WPC forecasters use a variety of sources to create the ERO

probabilistic forecast; including deterministic models, ensem-

bles, statistical tools, current environmental conditions, and

forecaster experience. Statistical tools include the Colorado

State University Machine-Learning Probabilities first-guess

field for the ERO (Herman and Schumacher 2018a,b), the

Automated Atmospheric River Detection method (Wick et al.

2013), the Ensemble Situation Awareness Table [National

Centers for Environmental Prediction (NCEP) 2019] to rec-

ognize extreme events, and ensemble clustering methods

(Zheng et al. 2017). Dynamical tools include a variety of op-

erational and experimental atmospheric models and blends

from the United States [e.g., the Global Forecasting System

(Yang and Tallapragada 2018), theHigh-Resolution Ensemble

Forecast system (Pyle and Manikin 2018), and the National

Blend of Models (Hamill et al. 2017), to name a few] and

internationally (including the government of Canada, the

European Centre for Medium-Range Weather Forecasts,

and the Met Office).

As mentioned in section 1a, QPF is not the only important

factor to consider when creating a probabilistic flash flood

forecast. To explicitly simulate the streamflow/run-off com-

ponent of the hydrological cycle, several operational hydro-

logical models have been developed including the Flooded

Locations and Simulated Hydrographs project that uses the

Ensemble Framework for Flash Flood Forecasting hydrologi-

cal system (Gourley et al. 2017) and the National Water Model

(Cosgrove andKlymmer 2016).WPC has begun to utilize these

products when issuing experimental EROs in the Flash Flood

and Intense Rainfall summer experiments (Barthold et al.

2015) starting in 2016 (Erickson et al. 2019).

As forecasting tools have evolved over the years, so too has

the ERO product. However, an extensive verification of the

EROhas not been performed for several years. A complicating

factor associated with verifying the ERO is related to the dif-

ficulty of finding a suitable observation dataset. Single source

observations, such as Local Storm Reports (LSRs), can suffer

from spatial reporting biases caused by missed events and in-

accurate reporting (Gourley et al. 2013). Flooding proxies such

as exceedances of FFG do not suffer from missed events but

rely on approximations and assumptions that may not always

accurately reflect flooding occurrence (Clark et al. 2014). This

study combines several observations and proxies, as detailed in

Erickson et al. (2019) and section 2a, to better capture flooding

instances that may be missed with traditional observations. In

addition, this study creates a new WPC-specific practically

perfect (PP) method, which uses observations and proxies to

develop a best-case forecast assuming perfect knowledge of the

prior events.

To ensure that the current ERO forecast probabilities are

reliable, this study verifies the ERO over a representative

training period between 2015 and 2019. Five years is long

enough to produce meaningful results while ensuring that

forecasting philosophies have not significantly changed

throughout the period. This study utilizes several ways to

verify ERO bias and skill with the following primary goals:

d Verify the ERO using a variety of flooding observations and

proxies.
d Determine if ERO probabilities are reliable.
d Determine the spatial issuance frequency of ERO forecasts.
d Analyze ERO bulk skill, including any potential trends in

ERO performance over time.
d Create an informative skill metric for forecasters to assess

individual events.
d Increase public awareness, understanding, evaluation, and

usage of ERO forecast products.

Section 2 describes the methods of the paper, including the

datasets used in the verification and metrics used to evaluate

ERO bias and skill. Section 3 details the development of a new

PP-method to be used as an additional ERO skill metric.

Section 4 presents the results, such as the ERO issuance fre-

quency, reliability, skill, and bias. Section 5 discusses the pros,

cons, and ways to interpret the verification results of sections 3

and 4, while section 6 concludes.

2. Methodology

a. Data

As mentioned in section 1a, the ERO is defined as the

probability of precipitation exceeding FFG within 40 km of a

point. The ERO product is issued for Day 1 (from the current

day valid to 1200 UTC the next day), Day 2 (valid from

1200 UTC the next day to 1200 UTC two days into the future),

and Day 3 (valid from 1200 UTC two days to 1200 UTC three

days into the future). On 13 October 2017, the ERO probabi-

listic definition was redefined from a point-based probability

to the probability of flooding within 40 km of a point based on a

1-yr verification (Erickson and Nelson 2018). This change was

made for two reasons; to be more consistent between National

Weather Service (NWS) national center outlook products

(e.g., Storm Prediction Center’s Convective Outlook) and
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because ‘‘probability at a point’’ values are sensitive to the grid

resolution. Despite this redefinition, WPC forecasters did not

change their forecasting philosophies. Verification does not

exhibit any significant differences before or after the ERO

neighborhood-based definition was implemented (not shown),

provided all forecasts have the same 40 km definition applied

before and after 13 October 2017. This paper represents an

updated and more elaborate version of the prior 1-yr verifi-

cation (Erickson and Nelson 2018) by extending the verifica-

tion period to 5 years (e.g., from 2015 to 2019) and including

additional ERO skill metrics.

This paper verifies the ERO using the current definition by

comparing the NWS NCEP Stage IV quantitative precipitation

estimate analysis exceeding FFG. The Stage IV analysis is a near

real-time product generated atRiver Forecast Centers by utilizing

radar precipitation estimates and rain gauges with some bias

correction andmanual quality control of data (Nelson et al. 2016).

Since FFG exceedances are a proxy for flash flooding, there

is a strong and vested interest at WPC to expand the current

definition of the ERO by including a more comprehensive

flooding database. WPC forecasters utilize a variety of flash

flooding tools (see section 1b) in addition to FFG, and the

consideration of additional flooding observations and proxies

would make the verification effort more consistent with how

forecasters issue the ERO. As mentioned in section 1b, this

extension is not intuitive since there is no single observation or

flooding proxy that properly captures all instances of flooding

across CONUS due to errors in reporting (e.g., missed obser-

vations) and assumptions associated with proxies (Gourley

et al. 2013; Clark et al. 2014; Erickson et al. 2019). Flash

flooding is not treated consistently within NWS starting with

the definition and carrying through to the forecasting, report-

ing, and verification of these events (Barthold et al. 2015). As a

result, in addition to comparing to Stage IV analysis exceeding

FFG, the ERO is also compared to a suite of flooding obser-

vations and proxies including Stage IV analysis exceeding 5-yr

average recurrence interval (ARI; Perica et al. 2013), U.S.

Geological Survey (USGS) river gauge observations, andNWS

local storm reports (LSR) observations. The 5-yr ARI is used

in this study since it qualitatively matches the flooding obser-

vations well, with 3-h rainfall exceeding 5-yr ARI capturing

80% of all floods (Lincoln and Thomason 2018). This combi-

nation of all flooding observations and observation proxies is

called the Unified Flooding Verification System (UFVS)

within WPC and is also discussed in Erickson et al. (2019).

An example of the Day 1 ERO product for Hurricane

Florence valid 1200 UTC 16 September–1200 UTC 17

September 2018 with corresponding UFVS verification is

shown in Fig. 1. In this case, all observations and proxies

highlight similar regions, with Stage IV exceeding FFG in-

stances covering a larger region than Stage IV exceeding ARI

instances. In general, FFG exceedances are more common

over the eastern half of CONUS, with 5-yr ARI exceedances

being more common over portions of the High Plains and

Intermountain West (not shown). Flooding proxy instances

occur much more frequently than LSRs and USGS observa-

tions. Spatial consistency among the verification datasets in the

UFVS is typical with severe flooding events, but borderline

flooding events typically exhibit weaker consistency with one

or two observations/proxies highlighting a similar region.

b. Verification

The Model Evaluation Tools (MET) Version 8.0 (Halley

Gotway et al. 2018) software are used in combination with

Python wrappers to verify the ERO from 1 January 2015 to

31 December 2019. MET is a set of verification software de-

veloped by the Developmental Testbed Center (DTC) where

the numerical weather prediction community can evaluate

numerical weather prediction output in a variety of ways. MET

features include regridding capability, evaluation to point-

based observations, spectral decomposition, evaluation to

grid-based analysis, options to perform tropical cyclone

verification, and object-based identification and tracking,

to name a few (Halley Gotway et al. 2018).

Since the MRGL category was added on 1 August 2016,

most verification excludes this category for consistency and to

FIG. 1. Example of aDay 1WPCERO forecast issued at 0944UTC 16 Sep 2018 (a) showing themarginal (green),

slight (yellow), moderate (red), and high (magenta) and (b) the corresponding verification over the Southeast

United States. Observations and proxies in (b) are Stage IV exceeding ARI (red triangles), Stage IV exceeding

FFG (blue circles), USGS instances (purple diamonds), LSR flash floods (cyan squares), and LSR regular floods

(blue squares).
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evaluate 5 years of data spanning back to 1 January 2015. The

rarity of ERO issuances is evaluated spatially using heat maps

(i.e., spatial frequencies of each ERO category) throughout

CONUS. ERO reliability is assessed by computing the average

fractional coverage of the verifying FFG exceedances and the

entire UFVS within 40 km of a point for each risk category.

Fractional coverage for an individual event is defined as the

area of the verifying observation/proxy inflated to a 40-km

radius divided by the total area of the WPC ERO contour

drawn. Verification is performed on a 10-km spaced grid. An

example of nearly 100% fractional coverage of Stage IV ex-

ceeding FFG instances at the HIGH category is shown in

Fig. 1b (e.g., blue circles encompassing the magenta HIGH

contour).

Considerable attention has been devoted to evaluating the

probabilistic skill of the ERO. Evaluating ERO skill can be

beneficial to forecasters when assessed in bulk over a verifi-

cation period or when evaluating a single event. For this study,

probabilistic skill is analyzed using the Brier skill score (BSS)

and area under relative operating characteristic (AUC; Wilks

2011) using Stage IV exceeding FFG and the entireUFVS. BSS

is computed by referencing the Brier score of the WPC prob-

abilities against the Brier score computed using the entire

UFVS climatology between 2015 and 2019. For consistency,

only events with a SLGT area covering greater than 300 km2

are considered in BSS and AUC computations. This 300-km2

size limitation in the BSS and AUC computations is chosen to

focus on larger flooding events.

To analyze the skill of individual events, this study uses a

modified form of the PP forecast technique originally developed

at the Storm Prediction Center (Hitchens et al. 2013). PP

forecasts are designed to resemble the best-case forecast given

perfect knowledge of the events beforehand. While Hitchens

et al. (2013) focus on convective outlooks at one threshold

(e.g., slight outlooks) and compare daily forecasts to practical

minimum/maximum skill scores, this study seeks to develop

reliable PP probabilities for multiple ERO thresholds. This PP

methodology is designed to answer questions such as ‘‘Would

this storm be considered a moderate ERO event?’’

The PPmethod is accomplished by applying a neighborhood

radius of influence (ROI) around the verifying point observa-

tions (i.e., inflating the point observation), and then smoothing

the binomial observation field (e.g., 100% when flood, 0%

when no flood) with a Gaussian filter to produce PP proba-

bilities that are most similar to the ERO probabilities. Since

two probabilistic fields are being compared, the PP approach is

suitable for assessing forecasters performance for an individual

storm (e.g., did this event reach the moderate threshold?) and

can be used to develop a bulk skill metric (e.g., mean absolute

error). Note that the PP method must first be tuned to the

forecast product with which it will eventually be compared.

WPC has traditionally implemented PP inWPC’s flash flood

and intense rainfall experiments using LSRs with a ROI of

40 km and a Gaussian kernel smoother standard deviation of

100 km (Perfater and Albright 2017). However, grid-based

flooding proxies (e.g., Stage IV exceeding FFG or ARI) occur

more frequently than LSRs (e.g., Fig. 1), which can result in

undesirably high PP probabilities compared to the ERO when

using the default PP configuration. This issue is even more

egregious when aggregating all flooding observations and

proxies in the UFVS into one PP field.

An example of the high PP bias is shown for the 24-h period

valid between 1200 UTC 17 August and 1200 UTC 18 August

2018 (Fig. 2). For this example, the PP is generated separately

using LSRs and USGS observations (Fig. 2a), instances of

Stage IV exceeding FFG (Fig. 2b), instances of Stage IV ex-

ceeding ARI (Fig. 2c), and all combined observations and

proxies applied to one grid (Fig. 2d). PP using LSRs and USGS

observations only highlights the approximate region over the

Northeast but fails to identify many flooding instances within

the SLGT risk area over the High Plains (Fig. 2a). While the

High Plains forecast may look like a forecast bust (e.g., an

event is forecasted to occur but does not) using just observa-

tions, FFG and ARI instances identify several regions in this

area and elsewhere over CONUS (Figs. 2b,c). These results

suggest that proxies may be important in data sparse regions

(in this case portions of Colorado and New Mexico) for iden-

tifying flooding instances. However, aggregating all observa-

tions and proxies’ results in four separate MDT regions and

one HIGH region when the actual ERO predicted two sepa-

rate SLGT areas (Fig. 2d). For reference, instances of ERO

HIGH are very rare, averaging 4.36% of all days between 2015

and 2018 (not shown). Hence, the PP approach utilizing all

data from the UFVS must be refined to reduce the high bias

and better align with the operational ERO before it can be

used as a verification metric.

To determine the optimal PP configuration for the UFVS,

sensitivity studies are performed from 1 January 2017 to

31 December 2017 while varying the value inside the ROI

[hereafter referred to as the proxy fractional value (PFV) from

0.4 to 1] and Gaussian smoother (kernel standard deviation

between 90 and 120km) for all grid-based flooding proxies.

Varying the PFV is related to the fraction of area inside the ROI

of theUFVSproxies that is expected to experience flooding, while

varying the Gaussian filter is associated with the spatial uncer-

tainty of the forecast. The goal of this optimal PP is to create a

product with similar average magnitudes and properties to that

of the ERO. To be consistent with previous implementations of

PP, LSR and USGS observations retain a PFV of 1.

Similar to Figs. 2a–c, three unique PP fields are created

separately and then averaged consisting of 1) combined LSR

and USGS observations, 2) instances of Stage IV exceeding

FFG and 3) instances of Stage IV exceeding ARI. The aver-

aging of three unique PP fields rather than aggregating all data

from the UFVS into one field (e.g., as is done in Fig. 2d) serves

as a spatial consistency check (i.e., it will be difficult for PP to

create a HIGH if all three data types are not in close proximity

to each other) between the different observations and proxies

of the UFVS. The optimal PP from the sensitivity studies is

selected as the defaultWPC configuration and rerun from 2015

to 2019 so it can be compared to the ERO. While the training

and verification period for PP are not independent, similar

results can be found by validating the ERO for 2015, 2016,

2018, and 2019 only.

When appropriate, uncertainty in the ERO verification is

assessed using bootstrapping (Wilks 2011), by resampling the
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original dataset with replacement 10 000 times. In cases where

skillmetrics (e.g., BSS andAuROC) are subset bymonth, year, or

some other condition, the raw data are conditionally subset and

resampled before the skill metric is calculated. In cases of boot-

strapping, error bars represent the 2.5th and 97.5th percentile.

3. Practically perfect results

a. 1-yr practically perfect sensitivity studies

Frequency bias (FB) and critical success index (CSI; Wilks

2011) are computed by verifying the PP sensitivity studies

against the ERO throughout 2017 (Fig. 3) for the same PP and

ERO thresholds (e.g., 50% ERO is compared to 50% PP).

Further details on how these metrics are computed are shown

in the appendix. The thresholds reaching 10%, 20%, and 50%

are analogous to the ERO’s SLGT, MDT, and HIGH risk

categories, respectively. MRGL is excluded from this verifi-

cation due to the low-impact nature of this category and the

complex shape of MRGL ERO contours, as explained in

section 5. The sensitivity studies properly identify the zero-bias

in the parameter space (i.e., the region where the ERO

threshold is unbiased for the corresponding PP threshold) for

all ERO categories, although they are in slightly different lo-

cations depending on the category. The zero bias in the pa-

rameter space associated with a smoothing radius of 105 km is

near a PFV of 0.75, 0.45, and 0.8 for SLGT, MDT, and HIGH,

respectively. There is no reason why the PP should be simul-

taneously unbiased within the same parameter space for all

three ERO risk categories, since they are based on arbitrary

probabilistic thresholds. The parameter space of highest CSI

(Figs. 3d–f) is at PFV 5 0.8; smoother 5 120 km, PFV 5 0.5;

smoother 5 120 km, and PFV 5 0.85 smoother 5 90 km for

the SLGT, MDT, and HIGH categories, respectively.

The optimal parameter space of the PP parameters (e.g.,

PFV and Gaussian filter) was analyzed by comparing the PP

probabilities to the Days 1–3 ERO probabilities. In general,

the optimal parameter space was identifiable by minimizing

bias and error for most metrics analyzed but varied slightly

depending on the bias metric (e.g., FB or mean error), skill

metric (e.g., mean absolute error, CSI, or equitable threat

score) and category analyzed (not shown). Since there are less

issuances of the ERO SLGT, MDT, and HIGH on Day 3

compared toDay 1, the positive bias in PP grewwith increasing

lead-time (not shown). However, the goal of this study is to

construct a PP methodology based on the Day 1 ERO when

forecast confidence is highest. The PP sensitivity study with the

probabilities that best matched the Day 1 ERO during a 1-yr

validation study had a PFV of 0.8 (1) for all grid-based proxies

(observations), and a Gaussian smoother of 105 km for all

observations and proxies. This PP methodology is selected as

the default configuration for the remainder of this study.

b. 5-yr verification of the optimal practically

perfect configuration

To assess how similar the new PP configuration is to the

WPC ERO, a 5-yr verification (2015–19) is performed (Fig. 4).

The 5-yr PP verification can be compared to the ERO to assess

bulk skill. For this comparison to be consistent, the continuous

PP field is converted to the discrete values of the ERO (e.g.,

MRGL through HIGH). The larger sample size of the 5-yr PP

FIG. 2. Practically perfect utilizing different types of flash flooding observations and proxies compared to theDay

1 ERO issued at 0900 UTC and valid between 1200 UTC 17 Aug and 1200 UTC 18 Aug 2018. Practically perfect

uses a 40-km radius of influence and a 100-km Gaussian filter with (a) just LSRs and USGS gauge observations,

(b) just instances of Stage IV exceeding FFG, (c) just instances of Stage IV exceeding the 5-yr ARI, and (d) all

observations and proxies to compute one practically perfect field.

FEBRUARY 2021 ER I CKSON ET AL . 329

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/13/21 02:55 PM UTC



can be used to gather seasonal statistics and infer potential

displacement issues when analyzed spatially. In addition, PP

can be compared to the ERO for individual days or events to

evaluate WPC forecast performance.

Mean error is computed by averaging the event-specific total

instances of PP exceedances minus total instances of ERO

exceedances, normalized by instances of PP exceedances.

Mean absolute error is computed similarly using the absolute

difference. In general, there is very little bias for SLGT and

HIGH (0.0 and 20.1, respectively), and a positive bias for the

MDT (mean error 5 0.6; Fig. 4a). These 5-yr bias results are

consistent with the 1-yr sensitivity studies for this configuration

(Figs. 3a–c). As discussed in section 3a, the sensitivity studies

have difficulty in simultaneously targeting the zero-bias in the

parameter space for all categories, and this study prioritized PP

SLGT and HIGH exhibiting little bias over that of the MDT

threshold. However, 1-yr verification studies (not shown) have

shown that forecasters should issue more frequent or larger

sized MDTs, which may partially explain the PP positive bias.

The false alarm ratio, hit rate, and CSI (Wilks 2011;

appendix) are shown in Fig. 4b. Not surprisingly, the false

alarm ratio is relatively high for all categories (exceeding 0.59),

with hit rates exceeding 0.22 for all categories. The relatively

high false alarm ratio and lower hit rates and CSI are the result

of inherent predictability limitations associated with flash flood

forecasting and displacement biases related to grid-based

verification. To reduce the issue of displacement, the proba-

bility of an ERO category being issued anywhere in CONUS

given the PP predicts said category within CONUS is presented

in Fig. 4c.When the PPmethod predicts a SLGT event, there is

an 79% probability that WPC forecasters will also issue a

SLGT. This is encouraging and suggests that PP instances of

SLGT coincide well with WPC forecasting SLGT. The condi-

tional probabilities are lower for the MDT and HIGH cate-

gories at 30% and 31%, respectively.

The spatial frequency difference of the PP method is shown

for SLGT, MDT, and HIGH categories in Fig. 5. Spatial fre-

quency difference is the number of instances of a PP threshold

being reached minus the number of instances of an ERO

threshold being reached, divided by the total number of events

and multiplied by 100. The overall zero bias for SLGT noted in

Fig. 4a is seen in Fig. 5a. Users and interested parties of WPC

forecast products should not interpret Fig. 5a to signify that

WPC forecasters should issue less SLGTs to remove the neg-

ative bias, since it is difficult to remove PP bias for all ERO

categories when tuning the PP method. Instead, strong

FIG. 3. Day 1 sensitivity studies spanning all of 2017 from different practically perfect configurations varying the proxy fractional value

and smoothing radius for (top) frequency bias and (bottom) critical success index reaching the ERO (a),(d) slight; (b),(e) moderate; and

(c),(f) high categories.
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gradients in spatial frequency difference can be used to deduce

where forecasters may be overforecasting or underforecasting

ERO categories. For instance, there is a negative bias in the

high terrain of Arizona following the Mogollon Rim, with a

small positive bias in the lower terrain to the southwest

(Fig. 5a). The gradient of bias, rather than the specific bias values,

suggest that forecasters issue considerably more SLGTs in the

higher elevation regions (i.e., where the PP bias is negative)

compared to the lower elevations (i.e., where the bias is zero or

slightly positive).WPC forecasters in an internal verification study

have noted that issuances of SLGT are overforecast (under-

forecast) in the higher (lower) terrain of Arizona (Lamers 2019),

and this study supports that forecasters may want to shift their

EROSLGTcontours toward the lower terrain ofArizona. Similar

frequency difference gradients are also noted for SLGT in the

centralAppalachians,High Plains, Central Plains/Midwest, and in

California (Fig. 5a).

For theMDT category, there is a large gradient of frequency

difference between the positively biasedWashington, DC area

and the near zero bias in southern North Carolina (Fig. 5b).

This gradient is also apparent for HIGH, albeit with a smaller

sample size (Fig. 5c). These results suggest that less flooding

events verify along most of the Gulf Coast compared to the

central mid-Atlantic. During an event where both the Gulf

Coast and mid-Atlantic are equally threatened by a MDT or

HIGH event, these results suggest that historically the mid-

Atlantic region is more likely to verify. This increased mid-

Atlantic verification is likely caused by a greater population

density resulting in more LSRs and USGS observations.

4. ERO verification

a. ERO issuance frequency

The issuance frequency of the Days 1–3 operational ERO is

presented spatially for the SLGT, MDT, and HIGH categories

in Fig. 6. Focusing on the Day 1 ERO (Figs. 6a,d,g), the most

FIG. 4. Day 1 verification of the optimal practically perfect sen-

sitivity study against EROs between 2015 and 2019 showing

(a) conditional (PP or ERO achieving risk category) mean error

and mean absolute error; (b) bulk false alarm ratio, hit rate, and

critical success index; and (c) the probability of an ERO risk cat-

egory being issued given it is predicted by practically perfect.

FIG. 5. Day 1 spatial frequency difference of the optimal prac-

tically perfect sensitivity study spanning 2015–19 compared to the

ERO at the (a) slight, (b) moderate, and (c) high categories.
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common issuance regions span from the western and central

Gulf Coast region northward to the southern Midwest and

eastward to the central Appalachians. MDT and HIGH in-

stances are considerably rarer than SLGT, with the maximum

issuance frequency for SLGT, MDT, and HIGH being 5.9%,

1.7%, and 0.6%, respectively. SLGT and MDT events are

categorized by a variety of atmospheric phenomena, including

tropical, monsoon, mesoscale convective systems, and synoptic

storms. HIGH events typically occur with tropical or tropical-

transitioning cyclones, although there are rare exceptions in

Southern California and the Midwest.

Issuances of SLGT,MDT, andHIGH are considerably rarer

at Day 3 (Figs. 6,c,f,i) compared to Day 1, due to increased

forecast confidence at shorter lead times. Some regions

experience a large increase in issuance frequency at shorter

lead times compared to longer lead times, such as the desert

Southwest, portions of the Midwest, and Ohio/Tennessee

River Valley region. Between 2015 and 2019, WPC did not

operationally issueHIGH risks in their EROonDay 3 until the

latter half of 2019, with Hurricane Harvey (2017), Hurricane

Florence (2018), and Hurricane Barry (2019) being three

exceptions.

The Day 1 SLGT ERO issuance frequency is separated by

season [e.g., December–January–February (DJF), March–April–

May (MAM), June–July–August (JJA), and September–

October–November (SON)] in Fig. 7. The ERO exhibits a

strong seasonal dependence, with DJF SLGT issuances dom-

inated by synoptic events (synoptic events and atmospheric

rivers) in the Southeast (West Coast; Fig. 7a). Many of the

West Coast SLGT issuances occurred during the anomalously

active 2016/17 winter season (Guirguis et al. 2019). MAM

(Fig. 7b) represents a transition period where synoptic storms

are common, but with increased mesoscale convective systems

in the Plains and Midwest. The JJA period is most active and

dominated by mesoscale convective systems, tropical activity,

the Southwest monsoon, and occasionally synoptic low pres-

sure systems (Fig. 7c). SON (Fig. 7d) is also a period of tran-

sition and features the decaying Southwest monsoon and

tropical activity with an increase in synoptically forced events.

b. Reliability of the ERO

As mentioned in section 2b, the Days 1–3 average fractional

coverage of the FFG exceedances (blue) and the entire UFVS

(orange) within 40 km of a point is computed for the SLGT,

MDT, and HIGH categories between 2015 and 2019 (Fig. 8).

The fractional coverage by category is assessing reliability, and

Fig. 8 is equivalent to a reliability plot tuned to the ERO-

specific probability thresholds. Since the operational ERO is

defined as the probability of Stage IV exceeding FFG within

40 km of a point, the blue bars are used to assess the ERO’s

reliability. Hence, the ERO is considered reliable if the blue

bar (FFG exceedances) falls between the green line (lower

ERO probabilistic definition) and the red line (higher ERO

probabilistic definition).

For all days and categories in Fig. 8, the ERO can be con-

sidered reliable. There is very little difference between frac-

tional coverage values at Days 1, 2, or 3. When considering the

entire UFVS database (orange bar), the fractional coverage is

FIG. 6. Issuance frequency of ERO forecasts spanning 2015–19 by risk category for (a)–(c) slight, (d)–(f) moderate, and (g)–(i) high over

(left) Day 1, (center) Day 2, and (right) Day 3.
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on the high end or slightly higher than the ERO probabilistic

definition. This result suggests that the ERO probabilistic

categories would need to be adjusted upward if the ERO

product were to be redefined to consider all the UFVS.

Otherwise forecasters should draw larger areas or make more

frequent issuances.

As mentioned in section 2b, theMRGL category is excluded

from most of the verification in this study since it was intro-

duced within the study’s verification window. To assess the

reliability of the MRGL category, fractional coverage is com-

puted from 1 August 2016 to 31 December 2019 for all cate-

gories (Fig. 9). All FFG-based ERO categories are reliable

during this period, except for Days 1–3 SLGT andDay 1MDT,

which falls just above the probabilistic range. Although the

MRGL category is reliable on the average, differences be-

tween Figs. 8 and 9 emphasize that ERO probabilities may not

be as well calibrated over smaller intervals. For instance, Day 1

preliminary plots from 1 January 2019 to 31 August 2019 sug-

gest that the SLGT and MDT fractional coverage continues to

fall just above the probabilistic definition (not shown). This

could be caused by forecasters drawing smaller, more accurate,

or less frequent SLGT and MDT contours starting in the latter

half of 2017.

c. ERO skill metrics

BSS (cool colors) and AUC (warm colors) are shown by

ERO issuance time for Days 1–3 (Fig. 10). Results with the

MRGL category excluded (cyan and magenta) and included

(blue and red) result in higher BSS and higher AUC when

MRGL is included due to additional probability categories.

For Day 1 (Fig. 10a), the BSS and AUC is slightly higher

with later issuance times, suggesting improvement in the

forecast closer to the event. In addition, there is a small

improvement in BSS and AUC throughout the day for Day 2

(Fig. 10b) and Day 3 (Fig. 10c), although these changes are

minor. Of note is the improvement in these metrics (aver-

aging 0.03 for BSS and by 0.05 for AUC) from Day 2 to Day

1 with the MRGL included.

Figure 11 shows BSS averaged and grouped by month for

2015 (green), 2016 (blue), 2017 (cyan), 2018 (red), 2019 (ma-

genta), and the arithmetic mean (black line). As expected,

there is a strong seasonality to BSS with higher (lower) values

during the cool (warm) season. This is likely the result of BSS

being sensitive to the observed frequencies (e.g., lower ob-

served frequencies have lower BSS) andmodeled precipitation

exhibiting lower error during the cool season, due to more

predictable larger-scale forcing (Sukovich et al. 2014).

However, there is considerable variability in BSS from year

to year, with BSS varying by a factor of 2 for many of the

months analyzed.

Figure 12 displays annual averages of BSS, AUC, and ERO

size (in grid points) between 2015 and 2019. In general, BSS

(AUC) values have decreased (increased) slightly between

2015 and 2019 (Figs. 12a–c), but these results do not lend

themselves well to statistical significance tests. Although there

was a decrease in EROSLGT size in 2017, this appears to be an

outlier compared to the other years analyzed (Figs. 12d–f).

Hence, the increase in SLGT and MDT fractional coverage

shown in Fig. 9 compared to Fig. 8 is likely not caused by

forecasters systematically drawing smaller contours. However,

it is possible that the higher fractional coverage is caused by a

combination of higher forecaster confidence with an increased

proclivity to not issue a SLGT and MDT when the forecaster

is on the fence.

As mentioned in section 2b, BSS and AUC exhibited large

variability from day-to-day, even when less significant events

were filtered out. This is not apparent when verifying the ERO

against the PP probabilities using monthly averaged FB and

FIG. 7. Issuance frequency of Day 1 ERO forecasts spanning 2015–19 at the slight risk category for (a) DJF,

(b) MAM, (c) JJA, and (d) SON.
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FIG. 8. ERO average fractional coverage between 1 Jan 2015 and

31 Dec 2019 by risk category verified against Stage IV exceeding

FFG (blue) and Stage IV exceeding all flooding proxies/observa-

tions (orange) for (a) Day 1, (b) Day 2, and (c) Day 3.

FIG. 9. As in Fig. 8, but including the newer marginal risk cate-

gory introduced to the ERO on 16 Aug 2016. Note all categories

are verified between 16 Aug 2016 and 31 Dec 2019.
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CSI (Fig. 13). Most months exhibit a near zero bias with SLGT

(Fig. 13a), which may be decreasing in the last 2 years of ver-

ification. Note that while this trend is statistically significant at

90% using a nonparametric Mann–Kendall (M–K; Mann 1945;

Kendall 1975) test, this verification only spans 5 years and

considers each data point (e.g., each month) as independent.

Note that the verification in section 3b treats the ERO as the

observation, while this verification treats the PP as the obser-

vation. There also may be a small positive trend in CSI for

SLGT over the 5-yr verification (Fig. 13d), which is statistically

significant at 90% using a M–K test. This result is consistent

with previous model (Hamill et al. 2013; Baxter et al. 2014) and

WPCQPF studies (Novak et al. 2014; Sukovich et al. 2014) that

show a gradual improvement in skill over time. There is no

seasonality to FB or CSI verified against the PP. This is

encouraging when comparing the ERO to PP in day-to-day or

bulk verification like Fig. 13.

5. Day-to-day utility of the practically perfect method

As mentioned earlier, evaluating the ‘‘goodness’’ of the

ERO for a specific forecast or storm remains challenging. The

usage of standard error verification metrics such as BSS, AUC,

and equitable threat score exhibit significant variability from

day-to-day due to changes in spatial coverage and are more

useful when assessed in bulk. AnERO-specific PP is developed

to remedy this issue, and the utility of this methodology is still

being evaluated internally at WPC. However, this section will

describe some of the pros and cons of the PP methodology

thus far.

FIG. 10. Bulk BSS (cooler colors) andAUC (warmer colors) averaged by ERO issuance time for (a)Day 1, (b)Day 2, and (c)Day 3. The

ERO is verified against Stage IV exceeding FFG formarginal includedBSS (blue)marginal excludedBSS (cyan), marginal includedAUC

(red), and marginal excluded AUC (magenta). Error bars represent the 2.5th and 97.5th confidence intervals using a bootstrapping

method.

FIG. 11. Averaged monthly BSS grouped by year for 2015 (green), 2016 (blue), 2017 (cyan), 2018 (red), 2019 (magenta), and the 5-yr

average (black).
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By design, the PP method employs both a neighborhood

approach and aGaussian filter, which tends to result in circular

shapes. ERO forecasts are drawn by forecasters and do not

have this constraint. Hence, when ERO contours take more

elongated or complex shapes, the PP will likely appear as a

combination of one or more circular regions. In addition, the

MRGL category was largely not considered in this study since

these contours can be large and irregularly shaped and do not

typically have as high an impact as the MDT and HIGH cat-

egories. Furthermore, the PPmethodmay not showmesoalpha

or smaller risk regions (e.g., burn scars) that can work into the

forecast process for the Day 1 ERO (e.g., when antecedent

flash flooding conditions are in place), since they will be

smoothed out by the 105-km Gaussian filter.

Instead the PP method is designed to show the general

magnitude, placement, and size of the ‘‘observed’’ SLGT,

MDT and HIGH regions. For example, the PP method can be

used to infer if an ERO MDT forecast verified for a given day

and if the aforementioned MDT forecast targeted the correct

region.As an example, four case studies are shown highlighting

both the PP (shaded) and the 0900 UTC operational ERO

(contoured) issued one day prior valid ending 1200 UTC 1 July

2018, 24 July 2018, 18 August 2018, and 17 September 2018

(Fig. 14). The PP probabilities support the MDT issued in the

ERO in Fig. 14a, although the ERO is too far north. On 24 July

2019 (Fig. 14b), the MDT region over the mid-Atlantic is

strongly supported by the verifying PP, but the PP suggests a

MDT occurred in Colorado, rather than a SLGT. The small

SLGT over New Mexico and Texas valid 18 August 2018

(Fig. 14c) is not supported by PP, while the PP suggests a MDT

occurred over a small portion of eastern NY. Finally, the

HIGH risk issued during Hurricane Florence is strongly sup-

ported by the PP over a large area of North Carolina (Fig. 14d).

6. Conclusions

This study presents a comprehensive verification of the

Weather Prediction Center (WPC) Excessive Rainfall

Outlook (ERO; example in Fig. 1) valid from 1 January 2015 to

31 December 2019. The WPC ERO consists of four probabi-

listic categories; marginal (MRGL), slight (SLGT), moderate

(MDT), and high (HIGH). Most results in this study omit the

MRGL category since it was introduced on 1 August 2016.

Verification is performed against a variety of flooding obser-

vations and proxies, including Stage IV analysis exceeding flash

flood guidance (FFG), Stage IV analysis exceeding 5-yr

FIG. 12. Time series of yearly averagedBSS andAUC comparing (top) ERO to verification and (bottom) average number of grid points

for each ERO object by category for (a),(d) Day 1; (b),(e) Day 2; and (c),(f) Day 3. Error bars represent the 2.5th and 97.5th confidence

intervals using a bootstrapping method.
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average recurrence interval, U.S. Geological Survey river

gauge observations, and National Weather Service Local

Storm Reports. The collection of all different verification

sources is referred to as the Unified Flooding Verification

System (UFVS). Two different ERO verifications are per-

formed, the first comparing the ERO to FFG exceedances

(consistent with the current operational definition of the ERO)

and the second comparing the ERO to the entire UFVS.

Considerable attention is given to the appropriate skill

metrics in evaluating the operational ERO both when assess-

ing single events and bulk performance. This study utilizes

Brier skill score (BSS) and area under the relative operating

characteristic (AUC) to assess ERO skill in bulk and

develops a practically perfect (PP; Fig. 2) method to evaluate

both daily and bulk ERO skill. The PPmethod is developed by

interpolating the UFVS binomial data (100% 5 flood, 0% 5
no flood) to a grid, applying a 40-km radius, setting a proxy

fractional value (PFV), and applying a Gaussian smoother to

create a ‘‘probabilistic observation.’’ Sensitivity studies are

performed by varying the PFV and Gaussian smoother and

comparing the PP results to the ERO throughout 2017. The

optimal parameter space, defined in terms of reduced bias and

error (Fig. 3) for all ERO categories, has a 0.8 PFV for FFG

and average recurrence interval exceedances, a 1 PFV for the

flooding observations, and a 105-km Gaussian filter. A 5-yr

verification of the optimal PP selection exhibits a near zero,

positive, and near zero bias for SLGT, MDT, and HIGH, re-

spectively (Fig. 4a). In addition, given the PP predicted a

specific ERO category, there was a 79%, 30%, and 31% chance

of an ERO SLGT, MDT, and HIGH, respectively, being re-

alized (Fig. 4c). Overall, the PP method is consistent with the

ERO on the average and can be used to evaluate ERO per-

formance in bulk (Fig. 13), spatially (Fig. 5), and for individual

events (Fig. 14).

ERO issuance frequency is evaluated for the SLGT, MDT,

and HIGH categories from Days 1 to 3 (Figs. 6 and 7). The

greatest frequency of issuances spans from the Texas Gulf

Coast northward to the Midwest and eastward to the

FIG. 13. Monthly averaged (top) frequency bias and (bottom) critical success index comparing the practically perfect to the ERO for

(a),(d) slight; (b),(e) moderate; and (c),(f) high. Error bars represent the 2.5th and 97.5th confidence intervals using a bootstrapping

method.

FEBRUARY 2021 ER I CKSON ET AL . 337

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/13/21 02:55 PM UTC



Appalachians. Most HIGH issuances are associated with tropical

or posttropical cyclones. There is a strong seasonality to ERO

issuances with less activity during the winter primarily associated

with synoptic storms and more activity in the summer caused by

convection, tropical cyclones, and the Southwest monsoon.

The fractional coverage of UFVS occurrences within each

ERO contour is assessed to evaluate the reliability of the ERO

(Figs. 8 and 9). The ERO is reliable against FFG exceedances

for each probabilistic definition when considering the entire

5-yr period (Fig. 8), but fractional coverage just exceeds the

probabilistic definition after August 2016 for Days 1–3 SLGT

andDay 1MDT (Fig. 9).When fractional coverage exceeds the

ERO probabilistic definition, this may suggest that forecasters

should draw larger contours or issue the respective category

more frequently.

The ERO exhibits greater skill at shorter lead times in terms

of BSS andAUC (Fig. 10) when progressing closer to the event

from Days 3 to 1. In addition, the ERO exhibits greater skill in

the winter compared to the summer in terms of BSS, with large

monthly variability between different years (Fig. 11). For the

5 years analyzed, BSS, AUC, and average contour size exhibit

little change (Fig. 12). However, there may be a small decrease

in the monthly average bias along with a small increase in CSI

for SLGT when comparing the ERO against PP (Fig. 13).

The ERO is intended to focus on the potential for flash

flooding in the Day 1–3 range, and hence can be considered a

recommender to NWS forecast offices for the issuance of flash

floodwatches. This study is intended to inform the public of the

ERO forecast product verification effort. A future WPC paper

is currently being developed that will focus on the forecast-

process that goes into the manual generation of the ERO.

The verification results presented in this study will be

used to form a baseline agency goal for ERO skill in the

future. Many of these results have also been adapted to a

WPC internal ERO verification website, which is readily

available to WPC forecasters. This WPC website updates

daily and presents daily, monthly, and annual ERO veri-

fication statistics including AUC, BSS, fractional cover-

age, and PP and will gradually be transitioned to a public

interface.

The PP methodology developed in this paper can be further

utilized to enhance the ERO verification. This PP product is

designed to closely match the operational ERO’s SLGT, MDT

and HIGH thresholds and can be used in the evaluation of

individual events or to assess bulk performance in the long

term. However, if one assumes that the ERO contours take

the form of objects with low complexity (e.g., simple ovals),

PP and ERO objects can be identified and compared to look

for displacement and magnitude biases. Object-based iden-

tification software exists within the Model Evaluation Tools

(Bullock et al. 2016) and is applicable to ERO objects. Future

work will utilize object-based verification of the ERO com-

pared to the PP contours, with a strong focus on forecaster

displacement biases. Additional future work will explore re-

gional variability in ERO performance, particularly associ-

ated with tropical cyclones and the Southwest monsoon. For

interested users, an archive of the UFVS observations and

ERO archive is available at: https://ftp.wpc.ncep.noaa.gov/

ERO_verif/.
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APPENDIX

Verification Metrics

Frequency bias (FB), hit rate, false alarm ratio, and critical

success index (CSI) are computed by considering a set of di-

chotomous forecast and observation pairs at various ERO

thresholds using a 2 3 2 contingency table (Wilks 2011). The

dichotomous events are defined as

a5 observation yes, forecast yes,

b5observation no, forecast yes,

c5observation yes, forecast no:

Verification metrics are computed by

FB5
a1b

a1 c
, (A1)

hit rate5
a

a1 c
, (A2)

false alarm ratio5
b

a1 b
, (A3)

CSI5
a

a1b1 c
. (A4)

The Brier score (BS; Wilks 2011) is analogous to the mean

square error of the forecast–observation pairs and is computed

using the following equation:

BS5
1

n
�
n

k51

(y
k
2o

k
)2 ,

where y is the forecast, o is the observation, and k denotes the

number of n forecast–observation pairs. The relative operating

characteristic (ROC) measures hit rate versus false alarm rate,

while area under ROC assesses the ability of the forecast to

discriminate between events and nonevents.
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